The domatic number of regular and almost regular graphs

نویسنده

  • Raphael Yuster
چکیده

The domatic number of a graph G, denoted dom(G), is the maximum possible cardinality of a family of disjoint sets of vertices of G, each set being a dominating set of G. It is well known that every graph without isolated vertices has dom(G) ≥ 2. For every k, it is known that there are graphs with minimum degree at least k and with dom(G) = 2. In this paper we prove that this is not the case if G is k-regular or almost k-regular (by “almost” we mean that the minimum degree is k and the maximum degree is at most Ck for some fixed real number C ≥ 1). In this case we prove that dom(G) ≥ (1 + ok(1))k/(2 ln k). We also prove that the order of magnitude k/ lnk cannot be improved. One cannot replace the constant 2 with a constant smaller than 1. The proof uses the so called semi-random method which means that combinatorial objects are generated via repeated applications of the probabilistic method; in our case iterative applications of the Lovász Local Lemma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Domatic Number of Regular Graphs

The domatic number of a graph G is the maximum number of dominating sets into which the vertex set of G can be partitioned. We show that the domatic number of a random r-regular graph is almost surely at most r, and that for 3-regular random graphs, the domatic number is almost surely equal to 3. We also give a lower bound on the domatic number of a graph in terms of order, minimum degree and m...

متن کامل

Finding Domatic Partitions in Infinite Graphs

We investigate the apparent difficulty of finding domatic partitions in graphs using tools from computability theory. We consider nicely presented (i.e., computable) infinite graphs and show that even if the domatic number is known, there might not be any algorithm for producing a domatic partition of optimal size. However, we prove that smaller domatic partitions can be constructed if we restr...

متن کامل

k-TUPLE DOMATIC IN GRAPHS

For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...

متن کامل

The upper domatic number of powers of graphs

Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...

متن کامل

New results on upper domatic number of graphs

For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001